ホーム Current Year Archive Files Authors Instructions Submission Login 連絡先
International Journal for Uncertainty Quantification
Free Online Access

ISSN 印刷: 2152-5080
ISSN オンライン: 2152-5099

近刊の記事

Uncertainty quantification for deep learning-based schemes for solving high-dimensional backward stochastic differential equations
DOI: 10.1615/Int.J.UncertaintyQuantification.2024053491
Stability and Convergence of Solutions to Stochastic Inverse Problems Using Approximate Probability Densities
DOI: 10.1615/Int.J.UncertaintyQuantification.2024054008
Bayesian³ Active learning for regularized arbitrary multi-element polynomial chaos using information theory
DOI: 10.1615/Int.J.UncertaintyQuantification.2024052675
A novel probabilistic transfer learning strategy for polynomial regression
DOI: 10.1615/Int.J.UncertaintyQuantification.2024052051
Variance-based sensitivity of Bayesian inverse problems to the prior distribution
DOI: 10.1615/Int.J.UncertaintyQuantification.2024051475
Extremes of vector-valued processes by finite dimensional models
DOI: 10.1615/Int.J.UncertaintyQuantification.2024051826
Learning a class of stochastic differential equations via numerics-informed Bayesian denoising
DOI: 10.1615/Int.J.UncertaintyQuantification.2024052020
Covariance estimation using h-statistics in Monte Carlo and multilevel Monte Carlo methods
DOI: 10.1615/Int.J.UncertaintyQuantification.2024051528
Bayesian Parameter Inference for Partially Observed Diffusions using Multilevel Stochastic Runge-Kutta Methods
DOI: 10.1615/Int.J.UncertaintyQuantification.2024051131
Begell house Digital Library - Whole Library in One Click