|
Бесплатный онлайн-доступ
ISSN Print: 2152-5080
|
Текущий годТом 15, 2025 / Выпуск 3DOI: 10.1615/Int.J.UncertaintyQuantification.v15.i3 Table of Contents:
LEARNING A CLASS OF STOCHASTIC DIFFERENTIAL EQUATIONS VIA NUMERICS-INFORMED BAYESIAN DENOISING
Zhanpeng Wang, Lijin Wang, Yanzhao Cao
Zhanpeng Wang
Lijin Wang
Yanzhao Cao DOI: 10.1615/Int.J.UncertaintyQuantification.2024052020
BAYESIAN3 ACTIVE LEARNING FOR REGULARIZED ARBITRARY MULTIELEMENT POLYNOMIAL CHAOS USING INFORMATION THEORY
Ilja Kröker, Tim Brünnette, Nils Wildt, Maria Fernanda Morales Oreamuno, Rebecca Kohlhaas, Sergey Oladyshkin, Wolfgang Nowak
Ilja Kröker
Tim Brünnette
Nils Wildt
Maria Fernanda Morales Oreamuno
Rebecca Kohlhaas
Sergey Oladyshkin
Wolfgang Nowak DOI: 10.1615/Int.J.UncertaintyQuantification.2024052675
UNCERTAINTY QUANTIFICATION FOR DEEP LEARNING-BASED SCHEMES FOR SOLVING HIGH-DIMENSIONAL BACKWARD STOCHASTIC DIFFERENTIAL EQUATIONS
Lorenc Kapllani, Long Teng, Matthias Rottmann
Lorenc Kapllani
Long Teng
Matthias Rottmann DOI: 10.1615/Int.J.UncertaintyQuantification.2024053491 |
|
| Главная | Текущий год | Архив | Инструкции авторам | Submission Login | Контакты |
